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BALLISTIC RESEARCH LABORATORIES

REPORT NO. 682

Franz L. Alt
Aberdeen Proving Ground, Md.
1 September 1948

STEADY-STATE SOLUTIONS OF THE EQUATION OF BURNING

\ w ABSTRACT

hen a substance such as a low-order explosive or a propellant is ignited,'
the burning proceeds with a speed and temperature which are described by a certain
partial differential equation. The general solution of this equation is not known.
The present report deals with a special case of this equation, namely, the case of
steady state, in which the burning progresses with uniform speed. We assume more-
over that the burning substance has the sliape of a thin rod of Infinite length.. The
limitation to the steady-state case not only has the advantage of simplifying the
problem mathematically, but it is interesting because. in many practical cases the
phenomenon of burning approaches the steady-state rapidly. Thus, the steady-state
solutions presented in this report may also be thought of as limiting cases of more
general solutions. Similarly the limitation to a thin inf.nite rod is made mostly be-
cause it simplifies the problem; but the solutions for many other shapes donot'differ
much from the ones obtained here.

The present report considers both the case of a perfectly heat-insulated rod
and that of a rod which loses heat to its surroundings. For' the first case, all jos-
sible solutions are obtained; for the second case, the report ,is limited to the com,-
monly observed ranges of values of flame speed, heat loss and room tempdrature..
Within these .limit3, the -various possible types of solutions are discussed -and a
small number of solutions are presented numerically so that other solutions may be
obtained by interpolation.

Sections 1 to 4 of this re rt contain the major results and an outl.ie ofthe
methods used in deriving them. lQlqt of the detalled proofs as well-as a hfew-of the
less ntergsting results have been relegated to the, Appendix.
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METHOD OF APPROACH

It is desired to fihd the changes of temperature In a material in wh.ch an exothermic chemical

reaction, such as burning, is taking place. We consider the case in which the material has the shape of a

thin rod of infinite length. Each point on the rod is chiracterized by its abscissa, X, measured in centi-

meters from some point as origin. The temperature T (measured in degrees absolute) in any point of the

rod 1.3 a function of X and of the time t (measured in seconds from an arbitrary origin). Unless the tem-

perature is the same for all X, heat will be conducted along the rod and will cause temperature changes

which are subject to the well-knrwn equation of heat flow,

OT T
at ax 2

where k is a constant which depends on the thermic properties of the material. At the same time, heat

will be generated in every point by the exothermic reaction. We assume 1 that the rate of increase in

temperature brought about by this reaction is given by the Arrhenius expression A e where A and

Q are constants determined by the nature of the reaction, and R is the gas constant. In addition to this

rate of change in temperature and to the one due to heat conduction along the rod, we may have a certain

loss of heat to the space surrounding the rod. We shall first consider the case in which the rod is per-

fectly heat-insulated; we then have

OT k2T + QJRT (e)
4ax

This case is identical with th.t of a semi-infinite solid in which heat flows only inward from the surface

and not parallel to the surface; and also with any other case of one-dimensionial flow. Subsequently we

shall deal with the case in which heat is lost to the surrounding space (or galned from it) by conduction.

In this case

&T kkC + A e C (T-T) (2)a t sX
ax

where we have assumed that the heat conduction botween the rod and the surrounding medium is propor-

tional to tLe difference In temperature (an assumption which is true as C Rest approximation). C is the

factor of proportionality, and T is the temperature (assumed constant) of the apace surrounding the burn-S

ng rod.

iThis assumption implias, somewhat unrealistically, that the burning substance remains chemically homo-
geneous throughout the process of burning. .I

I I I I I I I I I II II
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We shall not attempt to find all solutions of the partial differential equations (1) and (2), but cn-

fine ourselves to steady-state solutions, that Is thoae solutions for which T, as a function of X and t, re-

mains constant along all lines

X - u t - const.(3

where u is a predetermined constant. In tils case the problem of finding T for all X and t reduces Itself

to the simpler one of finding T for all X and one particular t, say t - 0; for

T(X, t) .T(X - ut, 0) (4)

We shall write

X - ut X*, T(X - ut, 0) -T* (X*) (4a)

The same facts may also be expressed by saying that "the points of constant temperature travel along the

rod with uniform velocity u."

Fromn (4) we have

6T(X,_t) dT*(X*) BT(X, t) dT* (X*)

ax dX* ' ot dX*

so that the partial differential equation (2) becomes an ordinary dlfferenitial equation

d2 " *  dT* e-/RT (T 0 (5) 

V * 2 dX*

Of the six parameters In this equation, three may be eliminated by a ouitable choice of the units of

measurement for X anC T. If we set

X* = X - ut - x. Y" /RA, T* (X-) - y(x)- Q/R (5a)

u - v C - c.-A/Q, r, Ys .Q'R

equaticn (5) becomes

dx (6)

The symbols y and ys represent absolute temperatures, expressed In units, of Q/R. Similarly, v is the ve-

locity of propagation nf the burning process, and x may be considered as either time or distance, all meas-

ured in suiLable units.

- - .-..--- -. .~. I
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Equatln (6) is the "equation of steady-state burning." In order to solve It we note that It does not

contain x explicitly. Therefore, Its order can be reduced by one. Wit (:0nslder y, rather than x, as the in-
2 2

dependent variable of the problem and set dy/dx - -z(y). Then dz/dy - (dz/dx) - (dx/dy) - (d y/dxz) . (i/Z),

and (6) becomes

dz 1 -1/y
" 7 v - (e -c(y-y s)) (7)

This is a non-linear ordinary differential equation of the first order. We shall refer to it as the "trans-

formed equation." Our principal task will be to solve it; this is accomplishec'by numerical ntegration.

Once this Is done, the solution of (6) can be reduced to a simple quadrature, as follows: Instead of finding

y as a function of x, we find x as a function of y, from the equation

where z(y) is the solution of (7). Having solved 1., we obtain, the solution, of '5) by changing the scale factors

as in (Ba), and the solution of (2) by means of (4).

Equations (5) and (6) are of the second order, and therefore two boundary conditions are required in

order to determine a particular integral of either of these equations. One of these, which may be given in the

form of prescribing the values of the temperature or its first derivative for a particular value of x, only

serves to fix the location of the solution with respect to the x-axis. This is because, if one solution Is given,

nfnltly many others may be obtained by shifting the former by an arbitrary amount parallel to the x-axis.

The other boundary condition, however, has an csential influence upon the shape of the solution curve. It is

customary, in dealing with the equation of burning, to prescribe that the process of burning should start from

a non-burning equilibrium state: in the case withorut heat icss, the burning substance is supposed to have

originally been at zero temperature (since at any other temperature it is not In equilibrium), and in the case

with heat loss, it is supposed to have originally been at that temperature y which is Just so much higher

than the room temperature y 5 that the heat generated within the substance, e y0 , Is balanced by the heat

lost to the surrounding space, c(y - ys). Tn other words, It is customary to prescribe, as the second
0

boundary condition, that y - 0 (in the case c . 0) or y - y (in the case c:D) "a long time ago." It is not pos-

sible to postulate these conditions for any finite time (nor, by the same token, for any finite value of x),

since this wuld contradict the assumption of a steady state. Therefore, the second boundary condition is

formulated by stating that the temperature y should approach the limit stated (0 or yo) as x tends to infinity,

or, which is the same, as t tends to - ac. Evidently, z - -dy/dx must simu)taneously tend to zero. Thus,

in tern's of the transformed equation, this boundary condition states that z - 0 for y - 0 (in the case c 0)

or for y - y (in the case c 0).

SOLUTIONS OF THE TRAN3FORMED EQUATION WITHOUT HEAT LOSS

We consider first the case c - 0, L.e. . the case of a perfectly insulated rod. We confine ourselves

j
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to non-negative values of y- This limitation suggests itself because of the interpretation of y as the absolute

temperature of a substance (except for a scale factor). Figure I shows the shape of several solution - rves

of (7). Figures I - 4 are not drawn to scale. They merely show the general appearance of the solutions.

In Figures 1, 2 and 4 the temperature (y) is plotted horizontally, and the rate of change of temperature (z) is

plotted vertically.

There are infinitely manysolution curves similar to curve I-A of the figure. They start at the origin

with horizontal tangent, increase to a maximum, then decrease, intersect the y axis vertically, turn back in

the direction of decreasing y and reach the z axis for a certain negative value of z; at the intersection with

the z axis the slope is v. There is one and only one curve of this type through every point In the area bound-

ed by the % axis and curve I-B.

Cuive I-B is similar in shape to the curves of Type I-A except that its slope at the origin Is v

rather than 0. There is only one curve of this type. In the application of this differential equation to the

problem of burning this ip the most interesting solution.

The solutions of Type I-C are similar in shape to curve I-B but they start at a point on the z axis

with some positive value of z, rather than at the origin. The slope at this point Is again v. There are in-

finitely many solutions of this type One and only one passes through each point in the area between curves

I-B and fl-C.

Solution 11-C starts at the z axis with positive z and slope v, increases monotonically and approaches

the value z I/v asymtptotically. There is only one solution of this type.

The solutions of Type 111-C start at the z axis with a value of z larger than that of solution I-C.

Their slope at the starting point Is v. With increasing y they Increase to infinity. Their slope decreases

from y to a positive minimum value, then increases again and approaches v as y goes to infinity. One and

only one solution of this type passer through each point in the area above curve i1-B. The curves of Type I-C,

I-C and 111-C satisfy the differentiat equation but not the boundary condition z(S) - 0. On the other hand, all

curves of Type I-A as well atz the single curve of Type I-B are admissible solutions of our problem.

The five types of solution curves which we have described and which are sketched in Figure I axist

if v is considerably smaller than one. If the value of v is increased, the starting point of solution H1-C moves

closer to the origin. For a certain value of v it coincides with the origin. For this v there are no s,.utions

of Types I-B and I-C. We shall denote this limiting velocity by V. Its value has been determined by r-e-

peated numerical integration:

V - .90280.

If v increases beyond this value, then the solution curves have the shapes shown in Figure 2. The

solutions of Type I-A are similar to those for small v. They fill the area below curve 11-A. The latter is

a solution curve which starts at the origin with slope 0 and increases asymptotically toward z - I/v.

Curves Ill-A, II-B and I1-C of Fig-re 2 are similar to the curves III-C of Figure 1, except that rn-A and

III-B start at the origin and IF-A has a horizontal slope at the origin. There is only one solution of Type

III-B but infinitely many of Types ill-A and [1-C.
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SOLUTLONS OF THE EQUATICO OF STEADY-STATE BURNING WITHOUT HEAT L055

In the preceding pragraph we have discussed solutions of the transformed Equation (7). We now

turn to the corresponding solu'icms of Equation (6) still limiting ourseives to the case of perfect insulation

(c - 0). These solutiors can be :ouMd by the simple integretion indicated in Equation (8).

Solutions of Fauatian (6) corresponding to the five types of Figure 1 are shown in Figure 3. Note

that on this diagram the temperature y is plotted vertically whereas in Figure 1 it was plotted horizontally.

The horizontal axis in Figure 3 may be InturpruLed in two ways: as the X-axis along the burning

rod, where buraing is assumed to progress from left to right; or as the time axis, where time is read from

right to left. In the former interpretation, each of the curves shown in Figure 3 is a possible temperature

distribution along the rod, "possible" meaning a distribution which will result in a steady flow of heat; that

Is to say, if one of these distributions exists initially, then the generation of heat within the material of the

rod and the flow of neat along the rod will change the temperature in each point in such a way that after any

interval of time the temperature distribution will appear to have been shifted to the right without having

changed its shape. In the second interpretation, we may find out how the temperature in any desired point

of the rod changes with time, by traveling along one of the curves from right to left. We see that "a long

time agd' the temperature was zero (absolute), that it rises gradually, hnd that on some cueves it reaches

a maximum and declines again.

The solutions of Types I-C, II-C and III-C reach an absolute temperature of 0 at some finite point

X (or, in the other interpretation, the temperature starts at 0 at some finite time). These solutions are,

therefore, not representations of any steady-state phenomenon. Solutions of Type I-A or I-B, on the other

hand, can be interpreted as temperature curves along a burning rod in the steady-state. Co each of these

curves y has a maximum which might be thought of as the temperature of the burning front. 1 This front

should be visualized as proceeding along the burning rod from left to right (the direction of burning is de-

termined by the sign of u n Equation (3)). The portion of the temperature curve to the left of the burning

front (and correspondingly that portion of the solutions of (7) for which z is negative) covers that part of

the rod which is already burned. Because of the chemical changes caused by burning, Equation (1) no

longer represents the temperature changes .n this region.

in Figure 3 all solution curves have been drawn through one point. That is to say, we assume

tnat the temperatur in that particular point of the rod is given. Other solutions are obtained by shifting

those shown in the diagram to the left or right by any desired distance.

Certain points in Figure 3 are lettered the same as the corresponding points in Figure 1, to

facilitate comparison.

The maximum ordinate of curve I-B is of particular interest. It represents the highest burning

IActually this temperature will usually differ from the observed burning temperature because the conditions
prevalling In a .urning substance are not accurately described by Equation (1), especially not at high tem-
peratures at which most burning substances undergo chemical changes. It Is probable that a point somewhat
to the right of the maximum in Figure 3 corresponds more closely to the actual burning front.



BALLISTIC RESEARCH LABORATORIES 9

temperature which could possibly be reached in steady-state burning. Its value depends on v. The following

values were determined by numerical integration:

v Maximum y

10 - I  0.2

10- 3  0.0692

2 10 - 4  0.0565

2 x 1D_ 5  0.0448

2 x 10 - 8  0.0277

These values are plotted in Figure 5. The accuracy of the last decimal place is doubtful. The figures can

be converted to customary units, (degrees, centimeters, etc.) by means of Equations (5a). As v grars be-

yond 0.1 toward the value V - .90280, the maximum of y grows rapidly to infinity.

The only difficulty in the integration process (8) arises when z becomes 0. This occurs at most

twice on each solution curve. It can be shown 'hat at the points where the solution of (7) intersects the y

axis with vertical slope, the integral of 1/z has a finite value. On the other hand, for those solutions of (7)

which pass through the origin, the !21egral of 1/z goes to infinity as y tends to 0.

SOLUTIONS ALLOWING FOR HEAT LOSS

We now turn to the case in which c has some positive value, that is the case in which heat is lost

to the medium surronding the burning substance. The shapes of the solution curves in this case vary

greatly with the varying values of v, c and ys. In this discussion we shall confine ourselves to those values

which are found in actual experiments with burning substances. The range for v is that shown in the table

in the preceding section. Realistic values of c are of a magnitude between 10 and i0-22. For ys, which

represents room temperature, the values 0.012 and 0.017 are used. The difference between these values is

caused not so much by variations in real room temperature, as by the differences in the constant Q, which

determines the scale in which y is measured.

Furthermore, this discussion will be confined to that range of y which corresponds to temperatures

commonly measured. An added reason for this limitation is that for extreme values of y the heat loss is

prdoably not adequately represented by the term c(y - ys). Some indication of the behavior of solutions in

this extreme range is given In the Appendix.

The shape of the solution curves of (7) is shown in Figure 4. In this figure y 0 represents the tem-

perature of the rod before burning, y, the ignition temperature. The vlue yo Is slightly larger than room

temperature. This is because even at room temperature .?ome heat is gencratel Ln the combustible sub-

stance by the chemical reactions taking place. The difference in temperature between the rod and the sur-

rounding space must be Just large enough so that the small armount of heat generated equals the heat lost

to the surrounding space. As the temperature rises above y 0 , the heat loss increases at first more rapidly

than the amount of heat generated. For still higher temperatures, however, the latter increases more

rapidly; when the temperature reaches the value yl. heat loss and heat generation are again In balance.
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As before, we shall classify the solutions according to their behavior with increasing y. Some

reach a maximum and then decrease to z - 0, (Type 1), some grow to infinity (Type I), and one approaches

anymptottcally the value z - 1/v (Type MO. The further subdivision according to shape near the singular

points differs somewhat from the case without heat loss.

In Figure 4, to the right of y1 the shape of the curves is similar to those in Figure 1. However,

the slope of Type I-A curves at the point yI is not 0 but a small positive constant. The slope of curve I-B

at the point y, Is slightly smaller than v. All other curves intersect the line y = y1 with slope v.

To the 'eft of y1 there are infinitely many solution curves thrr:-gh the point y - y1 , Z = 0. All of

them have the same small positive slope, except for one which has a slope slightly smaller than v. The

latter Is the continuation of curve I-B, the former are the continuations of the curves of Type I-A. Of

Lhese, one passes through the point y -y, a , = 0, while the others are above or below it.

In order to have our boundary conditions satisfied, we have to consider solutions in the (y, z)

plane through the point y y y0 , z - 0. There are only two solution curves through this point, one increasing

and one de'creasing. This fact is of considerable importance in the physical interpretation of the solutions.

The decreasing curve represents not a burning substance but rather a substance in. which the temperature

is initially at the ignition point and drops slowly toward room temperature. (In Figure 4 this is the curve

ot Type I-A mentioned above; with a different selection of parameters it might be a curve of different

type.) T~ie other of the two curves passing through the point y0 is marked "I-D" in Figure 4. It represents

steady-state uurnng. It Is interesting to note that the latter solution is unique. Cn the other hano, in the

case without heat loss (c = 0) we saw that there are infinitely many solutions which start at 0 temperature

and represent ateady-state burning.

The infinitely many solution curves passing through the point y1 represent substances In which

the temperature was litially at the ignition point. SInce this is a point of unstable equilibrium, it is not

surprising to find that there are infinitely many ways in which the temperature, starting from this value,

can either increase or decrease.

Figure 4 shows the field of the transformed equation (7), similar to Figures 1 and 2. It is easy to

visualize the shape of the corresponding solutions of the equation of burning, in analogy to Figure 3. In

paiticular. the solution corresponding to I-D in Figure 4-the only one which satisfies our boundary con-

ditions-looks like I-B in Figure 3, except Lhat its asymptote on the right is not zero but y0 "

It is of primary interest to detemine numerically the maximum temperatures for the unique so-

lution of steady-state burning. The following values were obtained by numerical integration of Equation (71:

v Ys Maximum y

10-3  .012 .0672

10-3  .017 .0663

2 x 10 - 5  .017 .0428

2 x 10 - 8  .012 .0268

These figures, as well as those given in "Solutions of the Equation of Steady-State Burning without Heat Loss,"
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previously, are plotted In Figure 5. The accuracy of the last decimal place is in doubt. The difference be-

tween the values of y given in the two tables is approximately 3% in the case where y is .012, and 4% where

YS Is .017. These percentages can certainly not remain constant for all values of v, but in the range covered

by this report they represent a sufficiently good approximation.

Note that the value of c is not listed in the above table. This is because the results are practically

independent of c as long as c is small but positive. The presence of c does, however, have the measurable

effect of "stopping" the solution curves at y - y0 , rather than at y - 0.

The temperature curves which have been calculated numerically are shown in the attached graphs

9-13. Those for c = 0 are solutions of Type I-B,those for postLive n are solutions of Type -D. Figures 9-12

are plots of the temperature gradient against temperature, similar to Figures I and 4. Figure 13 shows

the temperature distribution along the burning substance, similar to Figure 3. One difference between

Figures 3 and 13 is that the former shows all Integral curves going through one point, whereas in the latter

each curve is assumed to reach its maximum for x - 0. This is, of course, a matter of choice of initial

conditions. Moreover, Figure 13 has a logarithmic scale for x, so that x 0 is not shown.

III
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APPEDIX

Computatkmai Procedure. In the application of Equations (1) and (2) to steady-state burning, the

most interesting solutions are (a) in the case c = 0, the solution of Type I-B, and (b) in the case of positive

c, the solution of Type I-D. In the form (7) the equation can be integrated numerically by one of the usual

methods. Only the points for which z = 0 need special attention, since in these points the right-hand side of

(7) is not determined. These points shall now be considered.

We shall use the abbreviations a

p(y)= e -c (y- ys) (9)

q (y, z) = v - p (y )  (10)z

so that Equation (7) can be written

. (y, z) (I)

The points in which the integrals of this equation intersect the y-axis are of two types: those where p(y) # 0,

and those where p(y) = 0.

In the former case, if we approach a point z 0 along an integral curve of (11), dz/dy increases be-

yond all bounds. The process of numerical integration can nevertheless be continued in the neighborhood of

these points by changing variables, considering z as the independent and y as the depenrent variable, and in-

tegrating the equation in the form

dz I- ( e l/ - (y - y

It remais to investigate the points where z - 0 and p(y) = 0. It can be shown by elementary con-

siderations that the bnction p(y) vanishes In one, two or three points (for real positive y) depending on the

values cf the constants c and y. If c is larger than or equal to 4 e - 2, then p vanishes in one place only,

regardles.- of the value of ys" If c is less than 4 e - 2 , then p vanishes in three places provided y lies be-
-1tween certain boundaries. For c less than e - , the lower of these boundaries is zero, i.e., p vanishes In

three placer; provided only that y5 Ls small enough. In practice, c is always very much smaller than either

of the two limits mentioned, being of a magnitude between 10 and 10 " . Moreover, in all practical

cases ys is so small that p(y) vanishes for tnree different values of y. We shall denote these three places

in order by yo, yI Y2 " The smallest, yo, is always slightly larger than ys; it is the temperature of the

combustible material before burning has begun. y1 Is the Ignition temperature. Y2 is, in the .sual appli-

cations, co large that it is never reached.

I: c = 0, then p(y) vanishes only for y 0.

We shall see below that If an integral curve of (11) passes through the point (y1 , 0), then in that point
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Its slope has one of the two values

2 42

If an integral curve of (II) passes through the point (y , 0), then its slope in that point has one of the two

values

2 -/Z+ - 0 c
- -

Yo

In practical cases, these two values are almost equal to v + a and to - -, respectively. If, in the case c 0,

an integral curve passes through the origin, then its slope at the origin has one of the two values v or 0.

For the numerical computation it is important to remember that the integral curve going through

the origin with slope v, or through (y , 0) with slope v + c/v, remains almost straig:ht for a considerable

distance. Thus, the numerical integration along these curves can be begun with fai-ly large steps. At some

distance from the origin or the point (yo, 0), the slope begins to differ noticeably from its initial value, and

then the length of the integration step must be diminished.

The solution of Equation (6) is obtained, as explained in "Method of Approach" (page 8), by in-

tegrating the differential - L_. However, the tnte-grand becomes infinite when z Is zero. if simultaneouslyz
p(y) is different from zero, then the Integration can nevertheless be carried out; for in the neighborhood of

such a singularity

d ,1  dz dz
S dz Z V -p(y)

dy Z

and in the last form the denominator differs from zero even at the singular point. On the other hand, if p(y)

also vanishes, then it can easily be seen that the integral becomes Infinite. In other words, corresponding

to those solutions of (7) which go through the origin or through the point (yo, C) or (Y1, 0), we have solutions

of (6) which approach asymptotically, as x goes to itnfinity, the value y - 0 or y = yo or y - yl.

Integral curves in the singular points (z = p(y) = 0). (a) In the case c 4 0, the behavior of the nte-

gral curves of (7) or (ii) can be determined by known methods (see, for example, E. Goursat, Course In

Mathematical Analysis, Vol. I, Part II, pp. 179-180). If (y*, 0) represents one of the three singular points

(Yo 0), (yI, 0), (y2 , 0) of Equation (11), the integral curves of (11) in the ncighborhood of this point are

known to be similar to those of the equation

dz v z-Cy-y*) 'P'(Y*)

Integral curves of the latter equation have at (y*, 0) one of the two slopes

atI 4.v + 1 Tv'2-pir(y



14 BALLISTIC RESEARCH LABORATORIES

and

it 4

if s', a" are real and have opposite sign (i.e., if p' is negative, which is the case for y- and y2 but not for y
then there are only two integral carves passing through the singular point; the latter is called a "Saddlebacek".

(See the point yo in Figure 4). At (y1 , 0), p' is positive, so that s', s" are either real and positive or Imagi-
nary. If they are real, the point is a node; through it pass one Integral curve with slope s' and Infinitely many

with slope s". If s', s" are complex (or real but equal), then the point (y,, 0) is a focus, the integral curves

have the form of spirals which approach the focus. The corresponding solutions of equation (6) give a tem-

perature which oscillates above and below the ignition point y,. The condition for the existence of such os-

cillating solutions is

p, (yl)> -v

(b) In the case c - 0 the above method is not applicable because p' vanishes for y = 0 (which is the
only singular point in this case). We can, however, proceed as follows:

Suppose that a solution of (7) or (11) goes through the origin, and has In that point a derivative

z' (0). Then

z, (0) - ira z (y)

y=
0  y

According to a theorem about real functions, there is a sequence of points y, converging to 0, for which

z' (C)) -rm z' (y) .
y'-0

T hus

Z' (0)lim (v (y) ) v-lim lim ~..(12)y=O y=O y=O Y yO0

The last step, however, is permissible only if we know that at least one of the two lnits on the right con-

verges to a value different from zero. Now if z' (0) 0, then

limy=O z

exists and Is equal to 1/z' (0), and therefore different from 0, and it follows that the last equation of (12)

holds. Its only solution is z' (0) - v. Thus, z' (0) - 0 and a' (0) v are the only possible slopes of integral

curves of (7) at the origin in the case c - 0.
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We shall prove in the next section that the origin Is a node; there is only one integral curve of (7)
going through the origin with slope v, while there are infinitely many with slope 0. This proof is based on a

study of the curvature of the Integral curvas.

The Curvature of Integral Curves. In the further discussion we zliall denote, as before,

p (Y)-dp (3
dy

and furthermore by q' the derivative of q with respect toy in the direction of the integral curve of (7):

(y (, z ! + aq(y, z . dzz Oy Oz dy

(14)

= - p + (py) y,z 2

An integral curve going through the point (y, z) is convex or conrave n that point depending on the sign of

q' (y, ). In the (y, z) plane the region where q' is positive is separated from the region where it is negative

by a curve along which q' = 0 (and possibly by portions of the y-axis, on which q' is not defined).

For this curve we have

0q' = + q - - -
z 2 Z 2 z3

or

~i2 2
p z -vp.Z+p =0 . (15)

Th.s equation, which. d!etermines z as a function of y, is the equation of the curve on which q' - 0. The dis-

criminant of this quadratic equation,

D , p 2 (V2 
- 4p')

vanishes if either p = 0 or v2 
= 4p'. It is important to find the plsces where D ,- 0 because Equation (15) gives

two, one or no value of z for a given y depending on the sign of D foe that y. Now p2 vanishes in the places

Yo, y1 and Y2 in the case c A 0, and for y - 0 only in the case c - 0; everywhere else p2 is positive. On the

other hand, the sign of v P - 4 p' depends on the value of v and c. The fraction p' (y) has a maximum at

y - 1/2; its value is p' ( 1 - 4 e "2 - c. From this value, p' decreases to both sides, vanishes in two places

which we shall call y* and y*, and approaches the value -c as y approaches 0 or Infinity. Thus, If v is

larger than

VI'e e -2 - 4c,

I I I I Ii
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then v2 - 4p' is always positive, and D is positive everywhere except where p - 0. In this case the curve

q' - 0 consists of two branches which are separate for all positive values of y, except y0 YIP Y2 ' In the two

places where p' - 0, Equation (15) becomes linear and has only one solution, namely, z p/v; one of the two

branches of the curve q' - 0 goes to z - oo The shape of the curve is as shown in Figure 6. (This figure

as well as Figures 7 and 8 are not drawn tor scale; they merely show the general appearance of the curves.)

If, however, v is smaller than V1 e--4c, then v2 - 4p' Is zero in two points which lie between

7* and y. and to different sides of y de 1/2. Between these two points D is negative. If this interval excludes

the point y1, i.e., if D(y 1 ) is positive, then the shape of the curve q' 0 is as shown in Figure 7. The shape

of this curve is further modified In an obvious way if D(y 1) is negative, or if it is positive but y1 is larger

than 1/2. In Figure 7, the sign of q' (y, z) is indicated by + and - signs. In the + regions the integral curves

of Equation (7) are curved upwards, in the - regions they are curved downwards. Compare this diagram

with Figure 4 where some of the Integral curves are shown.

Figure 8 shows the types of curves q' - 0 which can occur in the case c - 0 for various values of

v. The dotted line corresponds to v - 4/e, for which D vanishes only at y .- 1/2 and y - 0.

Let us now calculate the derivative of q' (y, z) with respect to y in the direction of the integral

curves of (7). This is

q"* (y, z) - q' (y, z) + -- q' (y, z)• q (y, 7)

An easy transformation shows that

if, (y, Z) - 1 - !')qvcZ

Now p"(y) is positive between y - 0 and y - 1/2, and negative for all larger values of y. If we consider a

point on the curve q' = 0, then q" - -p"/z is positive for y < 1/2, z <0, and for y > 1/2, z > 0; q" is negative

for y <1/2, z>0 and for y >l/2, %<O. From this fact, a number of conclusions can be drawn concerning

the shape of the integral curves of (7). For instance, consider the case of Figure 8 for small v. The inte-

gral cturves of Equation (7) have positive curvature (q' > 0) inside the loop which is formed by the left-hand

part of the curve q' -0, as well as to the right of the right-hand part of that curve. If an Integral curve

passes through a point inside the loop, then the entire portion of the integral curve to the left of that point

is also within the loop. In other words, an integral curve can leave the loop only in the direction of increas-

ing y, but not in the direction of decreasing y. For in a point where the integral curve crosses the boundary

of the loop, q' is zero and q" is negative, therefore to the right of this point on the integral curve, q' is

negative, and thus the points on the right are outside the loop; that is to say, in crossing the boundary of

the loop in the direction of increasing y along an integral curve of Equation (7), we are leaving the loop,

riot entering it. Similarly, an integral curve of (7) can only enter but not leave, in the direction of increas-

ing y, the area to the right of the right-hand part of the curve q' - 0. Analogous conclusions can be drawn

about the various portions of the area of positive q' n the cases of Figure 6 and Figure 7.
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A further conclusion, in the case of integral curves going through points inside the loop in Figu.re 8,

is that all such curves will go through the origin, and that in the neighborhood of the origin their curvature

remains positive. Their slope at the origin is 0. There are Infinitely many curves of this kind, since they

fill the entire area of the loop. They are the curves of "Type I-A" mentioned in "Solution of the Transformed

Equation without Heat LosE," of this report. A similar reasoning applied to the right-hand portion of the

area where q' is positive, leads to the curves of "Type fIIC."

SUMMARY

Steady-state burning, as defined by Equation (5) or (6) can take on one of the foliowLr forms:

a. In the case without heat loss to the surrounding space, there are infinitely many s.Alutlons in

which the temperature approaches absolute zero asymptotically as x tends to infinity, has a mnnlmtum at

some finite x and decreases toward zero to the left; one of these Is distinguished by the foct that its maxi-

mum temperature is higher than that of any other solution in this group. There are also Infinitely many

solutions (these, however, do not fulfill the boundary conditions of steady-state burning in which the tern-

perature reaches zero for a finite x and increases beyond all bounds as x decreases. Between these two

groups of solutions there is a third whose character depends on the value of the burning velocity, v. If

this is smaller than .90280, the solutions in this group have a maximur temperature for some value of x,

and the temperature declines toward absolute zero to both sides of the maximum, If v is greater than,

or equal to, .90280 then the temperature in this intermediate group of solutions approaches infinity as x

decreases, and approaches zero as x grows to infinity. The limiting case of the first group appears to be

the most interesting one, and several examples (for various values of v) are plotted on Chart i3. However,

all the solutions of the first group are consistent with the conditions of steady-state burning.

b. In the case with heat loss, there is a unique solution which Is consistent with the conditions of

steady-state burning. On it, the temperature reaches a maximum for some finite x, declines to both sides

and approaches the "initial temperature" yo (close to room temperature) asymtptotically as x grows to in-

finity. (For declining x, the temperature declines to absolute zero; but this part of the curve no longer

represents burning in the same substance.) Examples of such solutions, for varying values of flame speed

(v) and room temperature (ys) are shown in Chart iS. The solutions are practically independent of the

value of c, the constant which determines the amount of heat ices, as long as c is reasonably small but

different from zero.

There are numerous other solutions of the differential equation of steady-state burning with heat

loss, but none of them satisfies the initial conditions usually associsted v:l*h burning; in particular, there

is no othe' solution which starts at room temperature. There are Infinitely many solutions which approach

the ignition temperature y, from above or below as x increases to infinity (c'rv z of Type I-A and I-C,

respectively); others are similar to the solutions of Type II-C and ill-C of the case without heat loss in

that the temperature increases to infinity with decreasing x; a few solutions (shown in Diagram 4 near the

origin) remain at low temperatures througho"=.

I
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Chart 4 shows all types of solutions (of the "transformed equat!,n"' ) for the case in which the para-

meters v, e, YS have realistic values; in particular, that v Is smaller than V, that ys Is sufficiently small

so that p(y) has three real roots, and that c is small. Other types of solutions occur for values of the para-

meters outide these limits. For Instance, if c is large enough relative to v, so that py 1 , > !v2, then the

transformed equation has solutions which spiral around the point y and the corresponding solutions of

the equation of burning oscillate about the ignition temperature.

Franz L. Alt
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